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Cogging
• Defined: adjusting the revolution frequency of 

bunched beam in a synchrotron to correspond to some 
external frequency

• Examples:
Centering collisions in an IR

• e.g. Tevatron, RHIC

RF synchronous transfer between rings 
• Phaselock

Synchronization with external beam
• Booster Cogging



“Phaselock refers to experiments 
on the interconnectedness of the 
universe, where changes in one 
part, create instantaneous changes 
in the rest of the universe.”



Example: Booster Phaselock
• Control beam’s radial position• Match fB =  fMI, φB = φMI
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Need for a Notch
• Extraction kicker has risetime of ~ 40 ns

Only ~ 10 ns between bunches

• Beam lost at 8 GeV during extraction

• Instead, beam is removed at 400 MeV
Reduces energy lost 20x

• Notch implemented for start of Run II and 
MiniBooNE

Reduces extraction loss 10x

• With a single batch, Booster determines 
beam position in the MI

84 RF buckets
around circumference

Notch

Booster



Multi-Batch Operation

Batch 1 (PBar)

Batch 2

Batch 3

Batch 4

Batch 5

Batch 6

Booster

Main Injector

½ Batch
(empty) ½ Batch

(empty)

• Two beams must be accelerated together in the Main Injector
Extracted to PBar & NuMI

• Requires “multi-batch” operation
6 or more batches from the Booster

NuMI



Booster
Cogging

84 RF
buckets

Notch

Booster

Main Injector
Circulating Beam

• Extraction on notch
Notch must be coincident with kicker pulse

Booster must be aligned with MI beam 

• However:

Accelerators are not synchronized

• Cogging aligns the azimuthal position of 
the notch with beam in the MI



Do it like phaselock?
• Revolution frequency is 1/84th of 

RF frequency

84x the distance to be moved

Needs longer time or larger bump

• Booster has no flattop

• Bump can only be slightly larger

⇒Need to cog during acceleration



Cogging

Notch

MI RF

Concept – Not Reality



Cogging Proof of Principle

Cogging turns corrected error signal

84 buckets
(one turn)

Pellico & Webber



Too Much Feedback



The Cogging System
• Controls:

Booster Radial Position
Notching
Extraction

• MI  LLRF constraints
Frequency maintained
Marker maintained
Takes resets from the Booster

• GMPS feedforward
• Beam Information

MDAT & Booster Beam Gate
• Triggering

BDOT signal
TCLK  timing



Cogging Electronics
• Use the “Generic” Booster Board

Also for GMPS, BLMs, etc.
• Digital and analog inputs/outputs

• Altera FPGA for fast counting
• DSP for calculations

DSPAltera



Measurements
• Monitor Notch position throughout 

the cycle
• Use Main Injector RF as a standard 

clock
• Booster RF frequency varies with 

energy
38 → 53 MHz

• Start counting on Main Injector 
revolution marker (every 11 µs)

• Stop Counting on Booster revolution 
marker (every 1.6-2.2 µs)

• Makes a table of positions (tripplan)

588 buckets @ 52.8114 MHz
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Following the Notch
Raw position • RF buckets slip at a rate fMI – fB ≤15 MHz

Notch wraps around the Booster many times

• Extraction with one batch
Count RF buckets to make a marker

Extract on marker

Reset Main Injector

• With several batches

Clean extraction is possible if total slippage 
is exactly the same cycle-to-cycle

Requires 1 in 1,000,000 consistency…



Relative Slippage

• In software, we calculate the 
relative slippage cycle-to cycle

Use a previous cycle as a 
baseline

Raw position                 ⇔ Relative to baseline

~ 3 turns



Sources of Slippage
• Any perturbation to RF will cause slippage

• Over 33 ms ∆f = 30 Hz gives 1 bucket slippage
• f = 37 – 53 MHZ  → part per million problem

• Several possible errors shown below:
Timing: 1 µs ⇒ 15 bucket slip
Magnet Frequency: 1 mHz ⇒ 6 bucket slip
Minimum Magnet current (δpi): 1/10,000 
⇒ 10 bucket slip
Maximum Magnet current (δpe): 1/10,000 
⇒ 7 bucket slip
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Timing Errors
• TCLK trigger is predicted from the Bdot of the 

previous cycles
Needs to occur few ms before the minimum

• Small variation in 15 Hz frequency can lead to 
µs errors

• MI markers come at arbitrary times w.r.t. 
trigger

• Leads to a timing error of as much as 11 µs

• Solution ⇒ Generate an internal marker 
synchronized to the cogging start

Cycle trigger
2.2 ms before

Bdot

64.5 ms

(Booster Momentum)

15 Hz

Fix: trigger data-taking on magnet 
minimum instead of clock

588 buckets @ 52.8114 MHz

Main Injector 
Revolution Marker

Current Minimum ⇒ Cogging Start

Internal Marker



GMPS Regulation
• Pulsed devices drag line current 

down
Particularly, RF & bias supplies

• Lower line current reduces power 
input to GMPS

• Apply feedforward
correction to GMPS inputs 



Error Corrections

~ 3 turns

w/o correction     and       w/ correction

~ 1 turn

• Also need MI to maintain reference RF frequency



Predictive Notching
• Delay creation of the notch 5 ms

Use information of that period
Make notch anticipating further slippage.

~ 20 buckets

w/o correction     and       w/ correction

~ 90 buckets

Sample

Notch



Radially Induced 
Slippage
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• Induced slippage scales with radial offset
Rates of ~ 1 kHz/mm

Calculation



Proportional Feedback
• Notch using prediction
• Radial Feedback late in the cycle
• ∆r = k · ∆S

Exponential damping
k ≈ 0.2 mm / bucket
e-folding time ≈ 10 ms

Notch Radial
Feedback

Notch

Radial
Feedback

Transition

Radial Offset

Proportional
Feedback



Higher Gain
• Causes beam loss



Sustained (Flat) Feedback
• Flat & proportional feedbacks

Small error goes to proportional feedback
• Gigher Gain

Larger errors go to a large constant value of 
feedback

• Stay there until error is small

0 ms 33 ms15 ms 35 ms

Transition Large Constant
Post-Transition Bumps

Radial Offset

Notch

Radial
Feedback



Final Cogging Algoritm
• Several timing improvements reduced beam slippage 

in the Booster

• Timing improvements reduce slippage: 200 → 70 
buckets

• Ultimate synchronization goal: 1 RF bucket

• Notch delayed, and placed in anticipation of slippage
Pre-transition bump

• Uses a prediction algorithm
• Reduces post-trans. cogging necessary

Flat feedback is the same as above
Proportional feedback is doubled

Large Constant
Post-Transition Bumps

Proportional
Feedback

Transition

Feed-Forward 
Pre-Transition Bump

Radial Offset

Notch



Figure of Merit: Extraction Losses
• Cogging reduces extraction losses substantially

80-90%, depending on conditions

• Occasional misses caused by phaselock or small timing errors
Override reduces phaselock losses by pushing error into MI

• Overall – running such that cogging losses rarely limit Booster throughput

NuMI Booster Cycles

Cogged LossesUncogged Loss



Cogging in Balance
• Cogging effects:

Later notch results in more loss
Radial motion

• Before trans: ± 1(2) mm
• After trans: ± 2(4) mm

GMPS must be controlled
BDOT signal is vital
Phaselock interferes
MI is more constrained

• Hardware running stably
Very few glitches
Extraction losses reduced 80-90%

• Only method for multibatch
Adequate for today’s running

• In the future:
Only a few tweaks in cogging algorithms 
are possible

• Maybe inputs to other ramped systems

Higher intensity beam might require 
smaller range of movement
Phaselock can be redesigned
Faster kickers?
…



Summary: Beam Delivered
• Booster cogging on  multibatch cycles for slip-stacking and NuMI

Sources of variation were identified, and eliminated where possible
System to enforce synch by feedback (feedforward)
System made operational ~ 1 yr ago 

• Over 30,000,000 cogged cycles
• Peak proton power to NuMI has approached 300 kW, achieving 1020 protons
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